Gabriel Chiodo

Publications list (peer-review)

sample image

Papers (published)

  1. Chiodo, G., M. Friedel, S. Seeber, A. Domeisen, A. Stenke, T. Sukhodolov and F. Zilker (2023) : The influence of future changes in springtime Arctic ozone on stratospheric and surface climate, Atmospheric Chemistry and Physics, DOI:10.5194/acp-23-10451-2023

  2. Zilker, F., T. Sukhodolov, G. Chiodo, et al. (accepted - in press): Stratospherically induced tropospheric circulation changes under the extreme conditions of the No-Montreal-Protocol scenario, Atmospheric Chemistry and Physics

  3. Józefiak, I., T. Sukhodolov, T. Egorova, G. Chiodo, T. Peter, H. Rieder, J. Sedlacek, A. Stenke and E. Rozanov (2023): Stratospheric dynamics modulates ozone layer response to molecular oxygen variations, Front. Earth Sci. 11:1239325, doi: 10.3389/feart.2023.1239325

  4. Friedel, M., G. Chiodo, et al. (2023): Weakening of springtime Arctic ozone depletion with climate change, Atmospheric Chemistry and Physics, DOI:10.5194/acp-23-10235-2023

  5. Janoski, T., M. Previdi, G. Chiodo, K. Smith and L.M. Polvani (2023): Ultrafast Arctic Amplification and Its Governing Mechanisms, Environmental Research - Climate, DOI:10.1088/2752-5295/ace211

  6. Nowack, P., P. Ceppi, S. Davis, G. Chiodo, et al. (2023): Response of stratospheric water vapour to warming constrained by satellite observations, Nature Geoscience, DOI:10.1038/s41561-023-01183-6

  7. Visioni, D., et al. (including G. Chiodo) (2023): Opinion: The Scientific and Community-Building Roles of the Geoengineering Model Intercomparison Project (GeoMIP) - Past, Present, and Future, Atmospheric Chemistry and Physics, DOI:10.5194/acp-23-5149-2023

  8. Polvani, L., J. Keeble , A. Banerjee , R. Checa-Garcia, G. Chiodo, H. Rieder, and K. Rosenlof (2023): No evidence of worsening Arctic springtime ozone losses over the 21st century, Nature Communications, DOI:10.1038/s41467-021-24089-6

  9. Kult-Herdin, J., T. Sukhodolov, G. Chiodo, R. Checa-Garcia, and H. Rieder (2023): The impact of different CO2 and ODS levels on the mean state and variability of the springtime Arctic stratosphere, Environmental Research Letters, DOI:10.1088/1748-9326/acb0e6

  10. Friedel, M., G. Chiodo, A. Stenke, D. Domeisen, and T. Peter (2022): Effects of Arctic ozone on the stratospheric spring onset and its surface impact, Atmospheric Chemistry and Physics, DOI:10.5194/acp-22-13997-2022

  11. Bergner, N., M. Friedel, D. Domeisen, D. Waugh, and G. Chiodo (2022): Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models, Atmospheric Chemistry and Physics, DOI:10.5194/acp-22-13915-2022

  12. Friedel, M., G. Chiodo, A. Stenke, D. Domeisen, S. Fueglistaler, J. Anet, and T. Peter (2022): Springtime Arctic ozone depletion forces Northern Hemisphere climate anomalies, Nature Geoscience, DOI:10.1038/s41561-022-00974-7 supplementary material, Nature Research Briefing

  13. Press Release by ETH Zurich: Ozone depletion over North Pole produces weather anomalies, also available in German here

  14. Chiodo, G., and L.M. Polvani (2022): New insights on the radiative impacts of ozone-depleting substances, Geophysical Research Letters, DOI:10.1029/2021GL096783 supplementary material

  15. Weisenstein, D., et al. (including G. Chiodo) (2022): A Model Intercomparison of Stratospheric Solar Geoengineering by Accumulation-Mode Sulfate Aerosols , Atmospheric Chemistry and Physics, DOI:10.5194/acp-22-2955-2022

  16. Yu-Chiao, et al. (including G. Chiodo) (2022): Stronger Arctic Amplification from Ozone-Depleting Substances than from Carbon Dioxide, Environmental Research Letters, DOI:10.1088/1748-9326/ac4a31

  17. Sukhodolov, T., et al. (including G. Chiodo) (2021): Atmosphere-Ocean-Aerosol-Chemistry-Climate Model SOCOLv4.0: description and evaluation, Geoscientific Model Development, DOI:10.5194/gmd-14-5525-2021

  18. Keeble, J., et al. (including G. Chiodo) (2021): Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850-2100", Atmospheric Chemistry and Physics, DOI:10.5194/acp-21-5015-2021

  19. Oehrlein, J., G.Chiodo, and L.M.Polvani (2020): The effect of interactive ozone chemistry on weak and strong stratospheric polar vortex events, Atmospheric Chemistry and Physics, DOI:10.5194/acp-20-10531-2020 supplementary material -- download data-set --

  20. Previdi, M., T.Janoski, G.Chiodo, K.Smith, and L.M.Polvani (2020): Arctic Amplification: a Rapid Response to Radiative Forcing, Geophysical Research Letters, DOI:10.1029/2020GL089933 supplementary material

  21. Paper highlighted in Science: Rapid response, Science, Vol. 369, Issue 6509, pp. 1336

  22. Ball, W., G.Chiodo, M.Abalos, J.Alsing and A.Stenke (2020): Inconsistencies between chemistry climate model and observed lower stratospheric trends since 1998, Atmospheric Chemistry and Physics, DOI:10.5194/acp-20-9737-2020 supplementary material

  23. Polvani, L., M.Previdi, M.England, G.Chiodo and K.Smith (2020): Substantial twentieth-century Arctic warming caused by ozone-depleting substances, Nature Climate Change, DOI:10.1038/s41558-019-0677-4.

  24. Chiodo, G., and L.M.Polvani (2019): The response of the ozone layer to quadrupled CO2 concentrations: implications for climate, Journal of Climate, DOI:10.1175/JCLI-D-19-0086.1

  25. Oehrlein, J., G.Chiodo, and L.M.Polvani (2019): Separating and quantifying the distinct impacts of El Niño and stratospheric sudden warmings on North Atlantic and Eurasian wintertime climate variability, Atmospheric Science Letters, DOI:10.1002/asl.923

  26. Banerjee, T., G.Chiodo, M.Previdi, M.Ponater, A.Conley and L.M.Polvani (2019): Stratospheric water vapor: an important climate feedback, Climate Dynamics, DOI:10.1007/s00382-019-04721-4 supplementary material

  27. Rieder, H., G.Chiodo, J.Fritzer, C.Wienerroither and L.M.Polvani (2019): Is interactive ozone chemistry important to represent polar cap stratospheric temperature variability in Earth-System Models?, Environmental Research Letters, DOI:10.1088/1748-9326/ab07ff

  28. Chiodo, G., J.Oehrlein, L.M.Polvani, J.Fyfe and A.K.Smith (2019): Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation, Nature Geoscience, DOI:10.1038/s41561-018-0293-3 supplementary material

  29. Chiodo, G., L.M.Polvani, D.R.Marsh, A.Stenke, W.Ball, E.Rozanov, S.Muthers, and K.Tsigaridis (2018): The response of the ozone layer to quadrupled CO2 concentrations, Journal of Climate, DOI:10.1175/JCLI-D-17-0492.1 supplementary material

  30. Smith, K., G.Chiodo, M.Previdi, and L.M.Polvani (2018): No surface cooling over Antarctica from the negative greenhouse effect associated with instantaneous quadrupling of CO2 concentrations, Journal of Climate, DOI:10.1175/JCLI-D-17-0418.1 supplementary material

  31. Chiodo, G., L.M. Polvani, and M.Previdi (2017): Large increase in incident shortwave radiation due to the ozone hole offset by high climatological albedo over Antarctica, Journal of Climate, 30, 4883-4890, DOI:10.1175/JCLI-D-16-0842.1

  32. Chiodo, G., and L.M. Polvani (2017): Reduced Southern Hemispheric circulation response to quadrupled CO2 due to stratospheric ozone feedback, Geophysical Research Letters, 44, 465–474, DOI:10.1002/2016GL071011 supplementary material

  33. Paper highlighted in Eos: Including Ozone Complexities in Climate Change Projections, Eos, 98,

  34. Chiodo, G., and L.M. Polvani (2016): Reduction of climate sensitivity to solar forcing due to stratospheric ozone feedback, Journal of Climate, DOI: 10.1175/JCLI-D-15-0721.1

  35. Chiodo, G., Garcia-Herrera, R., Calvo, N., Vaquero, J.A. Añel, and K.Matthes (2016): The impact of a future solar minimum on climate change projections in the Northern Hemisphere, Environmental Research Letters, DOI: 10.1088/1748-9326/11/3/034015

  36. Misios, S., et al. (including G. Chiodo) (2015):Solar Signals in CMIP-5 Simulations: Effects of atmosphere-ocean coupling, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2695

  37. Hood, L., et al. (including G. Chiodo) (2015): Solar Signals in CMIP-5Simulations:The ozone response, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2553

  38. Mitchell, D., et al. (including G. Chiodo) (2015): Solar Signals in CMIP-5 Simulations, The Stratospheric Pathway, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2530

  39. Chiodo, G., Marsh, D.R., Garcia-Herrera, R., Calvo, N., and J.A. García (2014): On the detection of the solar signal in the tropical stratosphere, Atmospheric Chemistry and Physics., DOI:10.5194/acp-14-5251-2014, 2014

  40. Chiodo G., N. Calvo, D.Marsh and R.Garcia-Herrera (2012): The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model, Journal of Geophysical Research, DOI:10.1029/2011JD016393

  41. Chiodo G., and L.Haimberger (2010): Interannual Changes in mass consistent energy budgets from ERA-Interim and satellite data, Journal of Geophysical Research, DOI:10.1029/2009JD012049

Papers (under review)